C++数据结构学习:递归(3)
今天图老师小编给大家精心推荐个C++数据结构学习:递归(3)教程,一起来看看过程究竟如何进行吧!喜欢还请点个赞哦~
迷宫的神话讲述了一位英雄如何靠着“线团”杀死了牛头怪(玩过《英雄无敌》的朋友一定知道要想造牛头怪,就必须建迷宫,也是从这里来的),我看到的一本编程书上援引这段神话讲述迷宫算法的时候,不知是有意杜撰,还是考证不严,把这个过程叙述成:英雄靠着线团的帮助——在走过的路上铺线,每到分岔口向没铺线的方向前进,假如碰到死胡同,沿铺的线返回,并铺第二条线——走进了迷宫深处,杀死了牛头怪。然而,神话传说讲的是,英雄被当成贡品和其他的孩子送到了迷宫的深处,英雄杀死了牛头怪,靠着线团标识的路线退出了迷宫。实际上,这个线团只是个“栈”,远没有现代人赋予给它的“神奇作用”。我想作者也是RPG玩多了,总想着怎样“勇者斗恶龙”,然而,实际上却是“胜利大逃亡”。
迷宫问题实际上是一个心理测试,它反映了测试者控制心理稳定的能力——在一次次失败后,是否失去冷静最终陷在迷宫之中,也正体现了一句诗,“不识庐山真面目,只缘身在此山中”。换而言之,我们研究迷宫的计算机解法,并没有什么意义,迷宫就是为人设计的,而不是为机器设计的,它之所以称为“迷”宫,前提是人的记忆准确性不够高;假设人有机器那样的准确的记忆,只要他不傻,都能走出迷宫。现在可能有人用智能机器人的研究来反驳我,实际上,智能机器人是在更高的层面上模拟人的思考过程,只要它完全再现了人的寻路过程,它就能走出迷宫。但是,研究迷宫生成的计算机方法,却是有意义的,因为人们总是有虐待自己的倾向(不少人在RPG里的迷宫转了三天三夜也不知道倦怠),呵呵,笑谈。
不管怎么说,还是亲自研究一下计算机怎么走迷宫吧。
迷宫的存储:按照惯例,用一个二维数组来表示迷宫,0表示墙,1表示通路,以后我们的程序都走下面这个迷宫。
更多内容请看C/C++技术专题 数据结构 数据结构教程专题,或